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Abstract

We present a probabilistic framework for correspondence
and egomotion. First, we suggest computing probability
distributions of correspondence. This has the advantage
of being robust to points subject to the aperture effect and
repetitive structure, while giving up no information at fea-
ture points. Additionally, correspondence probability dis-
tributions can be computed for every point in the scene.
Next, we generate a probability distribution over the mo-
tions, from these correspondence probability distributions,
through a probabilistic notion of the epipolar constraint.
Finding the maximum in this distribution is shown to be a
generalization of least-squared epipolar minimization. We
will show that because our technique allows so much corre-
spondence information to be extracted, more accurate ego-
motion estimation is possible.

1. Introduction
It can easily be shown that, mathematically, a small num-
ber of corresponding points can be solved, by way of the
epipolar constraint, to find the exact egomotion. Yet, af-
ter decades of research no completely satisfactory algorithm
exists to do this. The current state-of-the-art algorithmsfirst
match points between the images, then essentially try to find
the largest subset of these correspondences yielding a con-
sistent motion. We propose that, instead of matching points,
while acknowledging that many of the computed matches
will be incorrect, it would be better to compute a structure
which can be found reliably, for every point. We propose
such a structure inprobability distributions of correspon-
dence. Given a point, to find such a distribution is a well-
posed problem. We suggest that this generalization results
in much less correspondence information being given up.
First, a correspondence distribution may be computed for
any point in the scene, regardless of if it is a ’feature point’.
Second, the probability distribution can reflect exactly what
low-level information gives about the correspondence- even
if that is a single ”peak” at the correct point.

As an example of the use of such correspondence distrib-
utions, we develop a generalized notion of the epipolar con-

straint, which explicitly takes into account the uncertainty in
the correspondences. Instead of giving an exact mathemati-
cal constraint on the motions, the generalized version gives
a soft constraint, reflecting the ambiguities in the correspon-
dence. We will show that this constraint is a natural gener-
alization of previous work. Namely, if correspondences are
known (with some finite precision) the most likely motion
for our constraint corresponds exactly to the motion giving
the minimum least-squares epipolar error.

We will observe two major advantages to this approach.
First, motion can be found despite scenes which are difficult
to match, because of repetitive structure, etc. Second, be-
cause a very large number of correspondence distributions
are available the motion can be estimated more accurately.
The abundance of correspondence information reduces the
translation-rotation ambiguity.

1.1. Related Work
In general, high-level information is necessary to estimate
correspondences. As such, it is likely that correspondences
cannot be reliably estimated from low-level measurements
[12]. Commonly, many possible correspondences are com-
puted, and a robust algorithm such as RANSAC [6] is used
to search for a set of mutually coherent matches. A less
common approach is to represent the ambiguity in corre-
spondence more explicitly. Clocksin [2] estimates tradi-
tional flow vectors at each point, by first estimating flow
probability distributions, and then combining this informa-
tion through using spatiotemporal support regions. Simon-
celli et al. [17] create probability distributions over the op-
tical flow by assuming image gradients are corrupted by a
Gaussian noise model. These distributions is then used to
estimate traditional optical flow vectors. Rosenberg and
Werman [16] use full, nonparametric probability distribu-
tions of correspondence for object tracking.

Our method to compute correspondence probability dis-
tributions uses the phase of tuned Gabor filters. We use the
efficient Gabor filter implementation of Nestares et al. [13].
Stereo disparity [7] and optical flow [8] algorithms often
use phase to guide the correspondence problem.

Egomotion and Structure from Motion are among the
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most heavily researched areas of computer vision research,
and rather than attempting to summarize all references, the
reader is referred to a survey [14] and to more general re-
cent books [9] [4]. Wexler et al. [1] present a method
which aggregates information over multiple image pairs to
learn the epipolar geometry. Dellaert et al. [3] present
an algorithm which iteratively computes probabilities over
both correspondence and motion through the Expectation-
Maximization framework.

The approach most similar to the one here is by Maka-
dia et al. [11]. There, the authors use traditional feature
points, but rather than committing to an explicit matching,
they search for a motion such that each feature point has a
compatible point in the other image satisfying the epipolar
constraint. Their approach can be phrased probabilistically.
The principal difference with the current work is that we
extract correspondence information for all points in the im-
age, with out use of a feature detector. This means both that
additional correspondence information is available, and that
it is not necessary for the same point to be reliably detected
as a feature. This drastically increased amount of corre-
spondence information results in major increases in accu-
racy and robustness.

2. Correspondence

2.1. Ambiguities in Correspondence

There are 3 conditions affecting correspondence, resulting
in it being hard to estimate: the aperture effect, repetitive
structure, and the finite resolution of images. The aperture
effect is illustrated in Fig. 1 (a). Suppose correspondenceis
sought for the marked point. Clearly, this is impossible- it
can only be constrained to lie along the edge in the other im-
age. Repetitive structure, meanwhile, is seen in Fig. 1 (b).
Again, the correspondence cannot be found- instead the im-
ages constrain the correspondence to a set of disjoint points.
Generally, feature based techniques will ultimately reject
both of the above points, either because they will not be
detected as feature points, or because the matching process
will not have a single, ’outlying’ corresponding point. In
Fig. 1 (c), the correspondence would seem to be unambigu-
ous. Even here, however, it is important to realize that the
correspondence is only known with a finite precision, due
to the resolution of the images.

Of course in realistic images, most points will not fall
cleanly into one of the three categories above. For a given
point, certain correspondences will be likely, others un-
likely, and others virtually impossible. By computing a
probability distribution, whatever ambiguity happens to be
at hand can be represented.

(a) (b) (c)

Figure 1: In different situations, different information is
available about correspondence.

2.2. Correspondence Distributions
How, then, can correspondence probability distributions be
computed? Our focus in this paper is on theusage of these
distributions, but we give the following simple approach
used in our experiments. It is very likely that it can be im-
proved with further research. The large literature on point
matching is non-trivial to apply to the probabilistic case be-
cause the usual goal is only to find themost likely corre-
sponding point. We need a quantitative measure of the rela-
tive likelihood of all points.

Our method uses Gabor filters tuned to different orien-
tations and scales. It exploits the fact that for a given fil-
ter, matching points will have matching phase. (We do not
use the amplitude of the filter response- we note tangen-
tially that this gives the technique a high degree of contrast
invariance.) Since we are computing correspondence prob-
abilities over a quantized grid, the phase will not exactly
match. For the filter with orientationγ and scalel, denote
the phase byφl,γ . Given this single filter, we take the prob-
ability thats matches most closely tôq to be proportional to
exp(−[φl,γ(s)−φl,γ(q̂)]2π)+1. Here[θ]π denotes the prin-
cipal angle ofθ, given by adding multiples of2π so that it
is in the range[−π, π). Thus, when all filters are combined,
we have

ρs(q̂) ∝
∏

l,γ

(exp(−[φl,γ(s) − φl,γ(q̂)]2π) + 1) (1)

The constant of 1 increases robustness to noise by limit-
ing the influence of any single filter. Notice that because the
Gabor filter responses are not fully orthogonal, the assump-
tion of independence used to combine them here is only ap-
proximate. In our implementation, we found it convenient
to use a thresholdρmin, where if the probability of a cer-
tain correspondence was belowρmin, it was set to zero, and
removed from further consideration. Correspondence dis-
tributions are illustrated in Figs. 2 and 3 . Parts (c)-(j) show
the probability that the point marked in (a) corresponds to
each possible location in (b). Probabilities are encoded as
color. It can be seen that the large scale Gabor filters (i.e.
(c)) provide different distributions that the small scale filters
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

0.2
0.4
0.6
0.8

Figure 2: The computation of a correspondence distribu-
tion. (a) first image. (b) second image, over which corre-
spondence is being considered. (c)-(i) distributions for spe-
cific, decreasing scales, each with all orientations. (d)- (j)
distribution considering all previous scales. (j) final distrib-
ution.

(i.e. (i)). Nevertheless, it is shown in the right column that
the combination of all filters leads to an excellent distribu-
tion.

A further problem exists in the finite resolution of im-
ages. Even in the best possible situation- correspondence
for a ’corner’, for example- the matching points will not
be exactly known. We deal with this in a simple way. Af-
ter finding the probability that a points corresponds most
closely to somepixel q̂, we take the probability that it cor-
responds to some arbitrary pointq (not necessarily having
integer coordinates) by:

Figure 3: Several example correspondence probability dis-
tributions. The left column shows the first image, the mid-
dle shows the second image, and the right column shows the
probability over each point in the second image.

ρs(q) ∝ max
q̂

ρs(q̂) exp(−|q − q̂|2) + α (2)

Later in the paper, we will show that using this results in
the most likely motion under our framework being exactly
the motion with the least-squares epipolar error, in the case
of known correspondences.

To reflect the possibility that the phase information is
unreliable, we add a constant ofα. This happens for ex-
ample, if the point corresponding tos were independently
moving, or were to become occluded in the second image.
Notice that adding this constant is equivalent to taking a cer-
tain probability that the image information is unreliable,in
which case a flat distribution is appropriate.

Since a filter with a given scale and orientation is as-
sumed to match with the same filter in the second image,
this method is only appropriate for situations with limited
rotation or scale change.

3. The Probabilistic Epipolar Con-
straint

Supposing that the correspondences have been computed,
what do they tell us about the motion? We would like
to generalize the epipolar constraint to operate on proba-
bility distributions of correspondence. Our constraint on
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the motion from one correspondence distribution is the fol-
lowing: the probability of a motion is proportional to the
maximum probability correspondence satisfying the epipo-
lar constraint for that motion.

So, if we are considering the correspondence of a point
s, andE is the essential matrix we have

ρs(E) ∝ max
q:qT Es=0

ρs(q) (3)

We can think of the traditional epipolar constraint as
specifyingρs(q̂) as 1 for the known correspondence, and
0 otherwise. We will show in the discussion that this, along
with the Gaussian distribution about each point from the
previous section is equivalent to least-squares epipolar min-
imization.

4. Egomotion
The probability of a motion is given by combining the in-
formation given by all points:

ρ(E) ∝
∏

s

(ρs(E)) =
∏

s

( max
q:qT Es=0

ρs(q)) (4)

Substituting the expression forρs(q) (Eqn. 2), we ob-
tain:

ρ(E) ∝
∏

s

( max
q:qT Es=0

max
q̂

ρs(q̂) exp(−|q− q̂|2|)+α) (5)

Hence,

ρ(E) ∝
∏

s

(max
q̂

max
q:qT Es=0

ρs(q̂) exp(−|q− q̂|2|)+α) (6)

Notice that in this expression, we do not need to explic-
itly find the pointq. We need only the minimum distance
from q̂ of any point from the lineEs. We can therefore
write the above expression in the final form, in which it is
computed as:

ρ(E) ∝
∏

s

(max
q̂

ρs(q̂) exp(−(q̂T l(E,s))
2) + α) (7)

wherel(E,s) is the lineEs, normalized such thatrT l(E,s)

is the perpendicular distance fromr to the lineEs on the
image plane:

l(E,s) =
Es

√

(E1s)2 + (E2s)2
(8)

We denote theith row of E by Ei. In all experiments
using this probabilistic framework,α = 1/160 was used.
Our experiments suggest that the exact choice ofα is unim-
portant.

4.1. Optimization
Given a single motion,E, its probability can be very
quickly computed. Still, because there are 5 degrees of
freedom, computing a full motion probability distribution
is problematic- computational considerations demand such
a coarse sampling of each dimension that the entire peak of
the distribution may be missed. In our experiments, we will
maximize the motion function through a simple heuristic
optimization. First, random sampling (t on the sphere with
|t| = 1, ω such that|ω| ≤ .1) is used at approximately 2500
points. The probabilities are then computed for each point,
taking E = [t]×R(ω). Next, the Nelder-Mead simplex
search method is used at the 100 highest scoring samples.
The final maximum probability sample found is taken as the
result. In practice, we found that several of the 100 searches
resulted in very close answers, suggesting that missing the
global maximum altogether is unlikely. This is consistent
with results reported elsewhere for Egomotion techniques
using nonlinear functions [15] [18] suggesting there will be
several (but only several) local minima. Although this is in
a sense a brute-force maximization, in practice the slowest
part of our technique is often the computation of the corre-
spondence distributions.

Our implementation for the full algorithm, taking images
as input, and yielding egomotion as output, is available on
the authors website.

5. Experiments
5.1. Synthetic Images
As a first test of the technique, we prepared a synthetic
3D model using the POV-ray software. This model was
quite difficult, containing a great deal of repetitive structure.
We rendered two sequences using this model- the first with
a translation along the y-axis, while the second sequence
represents a translation along the z-axis. Each sequence
contained a small rotation. These motions were selected
because the literature suggests that the rotation-translation
ambiguity depends on the direction of translation but not
the rotation [5] [18].

For each of these sequences we generated 10,000 cor-
respondence probability distributions. For various sizes,
we generated 50 random subsets of correspondences, and
ran the algorithm was then run on each subset. Due to
the computationally demanding nature of this experiment,
only 25 searches were used in the second half of the mo-
tion optimization procedure. In Fig. 5, we plot the mean
errors for each size, using the know ground truth motion,
t0, ω0. The egomotion estimates continued to improve with
more matches. For a rigorous comparison, we used the
well known SIFT features [10] to provide matches. These
matches were then manually filtered to provide a set of cor-
rect matches. One frame is shown in Fig. 4 with the inlying



5. EXPERIMENTS 5

Figure 4: A frame from the synthetic model, with inlying
feature points marked.

features marked. The algorithm was run on 50 random sub-
sets of these matches for each size, withα = 0. (Again, this
is equivalent to least-squares epipolar minimization. See
Section 6.1.) Though the SIFT features performed remark-
ably well, generating a large number of correct matches, the
probabilistic approach is able to attain similar or lower er-
rors. This is despite the fact that the probabilistic approach
is fully automatic.

For another way of looking at these same results, Fig. 6
shows all 10 possible projections, for the algorithm run on
the z-translation sequence, with 64 correspondence proba-
bility distributions. The projection oftx vs. ωy shows the
rotation-translation ambiguity- a change in the translation
can be compensated with a change in the rotation to yield
a motion similarly consistent with the correspondence in-
formation. In Fig. 7 we see the sametx vs. ωy projection
for several numbers of correspondences. We can observe
that with a small amount of correspondence information,
repetitive structure may result in a very wrong motion es-
timate. As the amount of correspondence information is
increased this behavior disappears completely, but the ego-
motion estimate continues to improve, essentially because
the translation-rotation ambiguity continues to decrease.

5.2. Real Images
Figure 8 shows epipolar lines and the projected solutions
found for a real sequence, taken outdoors. This sequence
was chosen for their difficulty- a great deal of repetitive
structure is present. Notice that as the amount of correspon-
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Figure 5: Errors for the synthetic sequences, with vari-
ous number of correspondences or correspondence distri-
butions. Top: translation along y-axis. Bottom: Translation
along z-axis.

dence information is increased the solutions all converge to
a very small area.

For a slightly different type of experiment, 9 shows
epipolar lines and projected solutions for a wide-baseline
indoor sequence. Whereas previous experiments used a lo-
cal search region to create correspondence distributions,the
wide-baseline nature of this sequence demands that search
is done over the entire images. Note that the time com-
plexity to create these distributions will then beO(M · N),
whereM is the number of distributions created, andN is
the number of pixels in the image. As in other experiments,
distributions are taken for points randomly distributed over
the entire image.
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Figure 6: All 10 projections of the solutions found for the synthetic sequence with translation along the z-axis, with 64
correspondence distributions.
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Figure 7: Projections of the solutions onto thetx andωy plane, for the synthetic sequence with translation along the z-axis.
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Figure 8: Results for a real sequence. Top: Epipolar lines found using all 10,000 correspondence distributions. Bottom:
projected solutions using various numbers of distributions.
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Figure 9: Results for a real sequence. Top: Epipolar lines found using all 10,000 correspondence distributions. Bottom:
projected solutions using various numbers of distributions.

6. Discussion
6.1. Equivalence to Least-Squares Epipolar

Minimization
We have mentioned several times that our approach reduces
to least-squares epipolar minimization in the case of known
correspondences. We will show this now. Suppose we have
a set of manually selected matchessi ↔ q̂i. Thus, for each
si, we will haveρsi

(·) = 1 for q̂i, and 0 otherwise. Further-
more, because of the known correspondence,α should be
set to zero. IfÊ is the most likely motion under the proba-
bilistic framework, then:

Ê = argmax
E

∏

si

max
q:qT Esi=0

ρsi
(q) (9)

Now, sinceρsi
(q) ∝ maxq̂ ρsi

(q̂) exp(−|q − q̂|2) =
exp(−|q − q̂i|

2),

Ê = arg max
E

∏

si

max
q:qT Esi=0

exp(−|q − q̂i|
2) (10)

Now using the same notation forl(E,s) introduced ear-
lier, we have

Ê = argmax
E

∏

si

exp(−(q̂T
i l(E,si))

2) (11)

Since the argument maximizing the quantity on the right
will also maximize its logarithm, we have

Ê = argmax
E

∑

si

−(q̂T
i l(E,s))

2 (12)

Hence,

Ê = arg min
E

∑

si

(q̂T
i l(E,s))

2 (13)

This is the exact expression for the motion minimizing
the least-squares epipolar error. In this way, our approachis
a natural generalization of previous work.

6.2. Alternatives
The reader may object to several seemingly arbitrary
choices made in our approach. When we take the Gaussian
distribution about each point Eq. 2, why was amax cho-
sen over all pointŝq, rather than a sum? Similarly, when
we state our probabilistic notion of the epipolar constraint
in Eq. 3, why is the probability of the motionE taken to
be proportional to the maximum probability pointq, rather
than an integral over all pointsq? We are sympathetic to
this view. Indeed, suppose we take these two alternatives,
namely:

ρs(q) ∝
∑

q̂

ρs(q̂) exp(−|q − q̂|2) (14)

ρs(E) ∝

∮

Ω

ρs(q) (15)
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whereΩ = {q : qT Es = 0}. Briefly, we can then write:

ρs(E) ∝

∮

Ω

∑

q̂

ρs(q̂) exp(−|q − q̂|2) (16)

ρs(E) ∝
∑

q̂

ρs(q̂)

∮

Ω

exp(−|q − q̂|2) (17)

Now, denote the point onEs closest toq̂ by qmin. We
can see that the lines joininĝq to qmin andqmin to q must be
perpendicular. This implies|q− q̂|2 = |q−qmin|

2 + |qmin−
q̂|2, and therefore:

ρs(E) ∝
∑

q̂

ρs(q̂)

∮

Ω

exp(−|q−qmin|
2) exp(−|qmin−q̂|2)

(18)

ρs(E) ∝
∑

q̂

ρs(q̂) exp(−(q̂T l(E,s))
2)

∮

Ω

exp(−|q−qmin|
2)

(19)
However, since the integral on the right will be the same

for anyE, we can write:

ρs(E) ∝
∑

q̂

ρs(q̂) exp(−(q̂T l(E,s))
2) (20)

So, simply by changing themax in Eq. 7 to a sum, these
alternatives can be tested. We have run experiments doing
this- in practice, the results are very similar.

7. Conclusions
A cornucopia of applications in Computer Vision ranging
from stabilization, registration, view generation, 3D motion
estimation and the like have been addressed in an explicit
first step where optical flow or correspondence is deter-
mined. This paper shows that this first step may not always
be necessary. Instead, if one computes a probability distri-
bution for the correspondence at each pixel, this is enough
to obtain highly accurate results for, for example, egomo-
tion, not obtained by existing state of the art algorithms.
The promise of our robust solution suggests that this may
represent a useful framework for low and intermediate level
vision. Instead of attempting to estimate correspondence at
all costs to begin with, we accept that we have uncertainty.
Instead of computing flow or correspondence, we compute
a probability distribution of it, thus carrying the uncertainty
along and following the principle of ”least commitment”
[12]. As more information becomes available (e.g. 3D mo-
tion) the distributions become less uncertain and could be
used for obtaining further distributions of depth, shape etc.

Future work should address both if efficient methods can
be created to exploit correspondence distributions, and if

more principled algorithms exist to explore probabilitiesin
the space of motions.
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